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Abstract

Mutations are the driving force of evolution, yet they underlie many
diseases and, in particular, cancer. They are thought to arise from a
combination of stochastic errors in DNA processing, naturally occur-
ring DNA damage (e.g., the spontaneous deamination of methylated
CpG sites), replication errors, and dysregulation of DNA repair mech-
anisms. High throughput sequencing has made it possible to gener-
ate large datasets to study mutational processes in health and disease.
Since the emergence of the first mutational process studies in 2012, this
field is gaining increasing attention and has already accumulated a host
of computational approaches and biomedical applications.



1. Introduction

DNA molecules in our cells are targeted by diverse mutagenic processes. Such mutational
processes can act in germ cells contributing to species evolution (1), or in somatic cells,
accumulating with age and contributing to diseases, especially cancer. Recent mutation
rate studies of tumors have focussed on deciphering the somatically acquired changes in the
DNA of cancer cells to advance our understanding of the relation between mutagenic expo-
sures, DNA damage and repair and outcomes (such as cancer and uncontrolled cell growth).
Cancer genomes accumulate a large number of somatic mutations resulting from various en-
dogenous and exogenous causes, including normal DNA damage and repair, cancer-related
aberrations of the DNA maintenance machinery, as well as mutations triggered by car-
cinogenic exposures. Most mutations are typically harmless, but they provide a window
into mutational processes as different mutagenic processes result in characteristic muta-
tional patterns in the genome, referred to as mutational signatures (2-4). Identifying the
mutagenic processes underlying the observed mutational signatures is an important step
toward understanding tumor genesis and cancer evolution. Moreover, the understanding
of mutational processes acting on a patient’s genome might also help to develop personal-
ized therapies. For example, patients with Homologous Recombination Deficiency (HRD)
benefit from PARP inhibitor therapy (5). At the same time, HRD leaves a characteristic
mutational signature in the patient’s genome. Thus, the presence of this signature can be
used as a marker for PARP inhibitor therapy (6). However, the etiologies of many sig-
natures are still not fully understood, and developing methods facilitating the association
of signatures to potential causes has been a subject of intense study. Similarly, there is a
growing understanding that the emergence of mutation patterns is often context-specific,
prompting studies directed to understanding this context-dependence.

Access to steadily increasing genomic data sets has stimulated the development of com-
putational approaches to address the above-mentioned questions. In the past decade, con-
sortia such as The Cancer Genome Atlas (TCGA) (7) and the International Cancer Genome
Consortium (ICGC) (8) have produced datasets of millions of somatic mutations from more
than 35 cancer types. These datasets have enabled researchers to search for patterns of
somatic mutations across thousands of tumors. Nik-Zainal et al. (2) and Alexandrov et
al. (3, 4) were the first to model mutations observed in tumors as a mixture of hidden
mutational signatures. Theirs and subsequent work (9) has identified almost 49 validated
mutation signatures (10) and mutation signature analysis has now become a standard com-
ponent of cancer genome analysis pipelines.

Beyond cancer studies, analysis of the mutation signatures of healthy individuals (or
non-disease cases) has been also very fruitful in understanding the mechanisms that play a
role in embryogenesis, development and evolution. In this regard, studies of de novo muta-
tions and polymorphisms in humans has been particularly informative about the origin of
mutations, its dependence on age and other factors, and heterogeneity in rates and patterns
across individuals and species (11-17). Yet, large gaps remain in connecting exposures to
outcomes and in evaluation of the similarities and differences in the mutational landscape
of the germline and soma.

2. Computational inference of mutational signatures and their activity

Mutational signatures are most commonly modeled as a set P of signatures that are exposed
at different frequencies across genomes (2, 4). In this model, each signature is represented
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as a multinomial distribution over a set of mutation categories. Most commonly, categories
are formed based on the mutational change (6 choices'; C>A, C>G, C>T, T>A, T>C,
T>G) and the trinucleotide context in which the mutation occurs yielding 96 mutation
categories (e.g., TCC>TAC, CAG>CTG, etc.) or sometimes using extended context, as
large as seven bases on either side of the mutation as this may explain larger variation
in mutation rate (18, 19). The proportion of different mutation categories is referred to
as the 'mutation spectrum’ and each individual’s genome is then represented as a linear
combination of the signatures, where the number of mutations caused by a given signature
is called its exposure.

Following the terminology of Omichessan et al. (20), researchers have focused on solving
two broad classes of computational problems related to mutational signatures. In the de
novo problem, the goal is to infer both the signatures and compute their exposures in
the cohort. This was the initial focus of research in the seminal works in this area, and
research on this problem continues apace. In the refitting problem, the goal is to infer
the exposures of an existing set of signatures in a new cohort of individuals. The refitting
problem became critical after the Catalogue of Somatic Mutations in Cancer (COSMIC)
organization assembled an initial catalogue of validated mutational signatures, and refitting
methods are now arguably more widely used than de novo methods.

In the rest of this section, we provide an overview of methods for both ideas, focusing
on the most widely used approaches but also discussing active areas of research and open
questions. We also identify key methodological commonalities and differences. For ease
of exposition, we use the following notation throughout the section. We assume that the
primary inputs are mutation counts of m individuals across n mutation categories, most
commonly given in the m X n matrix M. We assume that the signatures matrix P (which
is either inferred or given) is a k X m matrix where each signature (row) is a probability
distribution. We also assume that the exposures matrix F is an m X k matrix. We note to
learn about the mutational processes some studies compare mutation spectrum or mutation
signatures across individuals.

2.1. Methods for inferring mutational signatures de novo

The standard methods for inferring mutational signatures de novo are easiest to understand
as a typical latent variable inference problem. The observed variables are the mutation
counts per patient, i.e. M. The latent variables (parameters) are the signatures P (global,
i.e. shared by all genomes) and the exposures E (local, i.e. differ by individual). Approaches
for modeling M have largely fallen in two camps. The original and most common approach
is non-negative matrix factorization (NMF) (21, 22). More recently, researchers have begun
exploring hierarchical probabilistic graphical models, in part because they allow the addition
of observed and latent variables without making inference algorithms significantly more
complicated.

2.1.1. Non-negative matrix factorizations. NMF methods for the de novo problem are the
most widely used and come in several different flavors. In its simplest form, NMF is solving

1We follow the standard of referring to each substitution’s reference base as the pyrimidine of
the base pair, though this also includes the corresponding variant type on the reverse complement
strand
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an optimization problem of minimizing the reconstruction error of observed matrix M given
inferred values for P, F' and a divergence function d:

argmin d(M, EP), 1.

E,P

where M, E, P are all non-negative. While solving this optimization problem in its exact and
approximate forms is NP-complete (23, 24) and there is no guarantee of a single optimal
solution, there are several heuristics that seem to do well in practice. In particular, the
multiplicative update method of Lee and Seung (21) is the most commonly used. Most
forms of NMF have at least one hyperparameter: namely, the rank k of the latent matrices
E,P.

NMEF also admits different probabilistic interpretations and/or extensions. One advan-
tage of the simple form of NMF is that it can be interpreted as a probabilistic model,
depending on the choice of divergence d. In the case where d is the Frobenius norm, mini-
mizing the reconstruction error of M is optimal assuming Gaussian noise (25). In the case
where d is the Kullback-Leibler Divergence (KLD), minimizing the reconstruction error of
M is equivalent to finding the maximum likelihood solution where M is Poisson-distributed
given F and P (26), which is a natural approach for count data. NMF can also be solved as
a Bayesian inference problem where priors are placed on the latent variables and/or where
the solution is constrained by regularization factors (e.g. for sparsity).

For the specific application to mutational signatures, a wide variety of NMF meth-
ods have been introduced. The original and one of the most commonly used methods is
SigProfiler from Alexandrov et al. (4), which solves the problem in Equation 1 where the
divergence is the Frobenius norm. More recently, SigProfiler has begun using the KLD
divergence (9). The other most commonly used method is SignatureAnalyzer, first used in
Kasar et al. (27) and introduced by Kim et al. (28). SignatureAnalyzer uses a Bayesian
form of NMF called Automatic Relevance Determination NMF that, in addition to inferring
the parameters E, P, automatically infers the rank k of the latent matrices (29). Forms of
these two methods were both used for identifying mutational signatures in the International
Cancer Genome Consortium (ICGC)’s Pan-Cancer Analysis of Whole-Genomes (PCAWG)
project that are now reported in the COSMIC database version 3 (9, 30).

There are other, less widely-used methods for mutational signatures that use differ-
ent forms of NMF. Fischer et al. (31) introduced EMu, which uses a statistical form of
NMF that is solved as a maximum likelihood problem. Rosales et al. (32) introduced
signeR, a Bayesian NMF where the observed matrix M is Poisson-distributed with rates
set by the latent matrices E, P which have Gamma priors, and a Markov chain Monte
Carlo expectation-maximization algorithm is used for inference. Critically, the Bayesian
form allows sampling from the posterior, both for data-driven selection of the number k of
signatures and to test the significance of differences in inferred parameters (e.g. whether
two groups have significantly different exposure to a given signature). Both Fischer and
Rosales also admit additional information in the form of the trinucleotide composition of
each sequenced region (which differ for, e.g., whole-genome versus whole-exome studies),
which can bias the inferred signatures. Covington et al. (33), Goncearenco et al. (34) and
Ramazzotti et al. (35) each used forms of NMF that encourage sparsity in the signatures
and/or the exposures.

2.1.2. Other hierarchical probabilistic graphical models. Researchers have also considered
probabilistic graphical models with a different form than NMF for inferring mutational
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signatures de novo. The key difference comes in as an additional layer of hierarchy in
the generative story: instead of modeling counts, they model each individual mutation. In
other words, each mutation has a latent variable that indicates which signature generated it.
This additional resolution can be important for modeling phenomena that vary by mutation
within the same individual’s genome. Another advantage of these models is that it is simple
to add or expand the hierarchy in the generative process, either to change how signatures
or mutations are modeled. A final advantage of these methods is that they can leverage
decades of research in related fields, such as natural language processing. The field of topic
model research is particularly relevant. In a classical topic model such as Latent Dirichlet
Allocation (LDA) (36), a corpus of documents’ word counts are modeled as a combination
of topics with per document activations. In the case of mutational signatures, the topics
are signatures, the words are mutation categories, and the activations are exposures.

Such hierarchical probabilistic graphical models for inferring mutational signatures fall
into four different categories, based on their purpose. In the first class is the first such model,
pmsignatures, which was introduced in 2015 with the purpose of changing how signatures
are represented to reduce the parameter explosion that would happen if researchers wanted
to model a greater number of flanking bases per mutation (37). In the second class are
methods that integrate additional observed data. Robinson et al. (38) adapted a structural
topic model (39) to model associations between observed covariates (such as cancer type
or DNA damage repair pathway inactivation status) and per patient exposures. Funnell et
al. (40) adapted a multi-modal, correlated topic model (41) to infer signatures and exposures
for both single base substitution and structural variation data. Additional methods that
take genomic location data into account are detailed in the Context Dependency Section
below. In the third class are methods with an additional layer of hierarchy for distinguishing
between groups of individuals with similar exposures. The models from Yang et al. (42) and
Sason et al. (43) both fall into this category. Finally, the fourth class includes methods that
use different optimization algorithms. For example, Matsutani et al. (44) use a variational
Bayes form of LDA to better select the number k of signatures active in a cohort.

2.1.3. Hyperparameter selection and other practical considerations. One challenge shared
by nearly all de novo methods is hyperparameter selection. The most common hyperparam-
eter is the number k of signatures. Approaches for inferring k range from cross-validation
(e.g. (38, 45)) to using the Bayesian information criterion (e.g. (32)) to Alexandrov et al.’s
approach that combines bootstrapping with a measure of stability and reconstruction er-
ror (4). Most commonly, researchers only search for k within a relatively narrow range.
Even methods such as SignatureAnalyzer that automatically infer the rank have other hy-
perparameters that must be selected.

Another challenge is that the number of mutations per tumor can vary greatly and
that this mutation rate and signature activity varies greatly by cancer type. Further,
even if the mutation rate is fixed, the number of mutations reported varies by sequencing
method, with generally 100 times more mutations in whole-genome samples than whole-
exome. Consequently, a key challenge all the methods face is in how to weigh individuals
and/or population/cancer types, such that the ones with the different mutation rates or
active signatures do not overwhelm the signal of rarer signatures. Alexandrov et al. (3)
took the approach of running their method on each cancer type individually and then all
cancer types together, reporting a ‘consensus’ of signatures across cancer types. Kim et
al. (28) sought to address the high variance in mutation rate within endometrial cancer
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by ‘splitting’ samples with extremely high mutation rates into multiple rows within the
M matrix. Versions of both of these approaches were used in the mutational signatures
project of ICGC PCAWG (9), where different NMF analyses were performed by cancer
type, sequencing type, and ‘hypermutator’ status.

2.2. Methods for refitting mutational signatures

In the refitting approaches, it is assumed that the set of mutational signatures is given
(matrix P), in addition to the count matrix M, and the goal is to infer the activity of
each signature in every sample (exposure matrix F). The signature matrix can consist of
either the full set or a subset of COSMIC signatures or signatures inferred from a specific
cancer cohort using a de novo method described above. The refitting methods are especially
useful when the analyzed set of mutations is too small for de novo signature inference (3),
for example, in the case of small sample size, targeted sequencing panels, samples with
few mutations such as in healthy populations or in slowly growing tumors, or analysis of
mutations located only in the specific genomic region of interest. This allows extending
the applicability of validated mutational signatures in small targeted studies and even in
clinical settings for individual patients.

There is a wide variety of refitting methods that have been introduced. Here, we present
selected representative approaches; see also a review by Omichessan et al. (20). Rosenthal
et al. (46) developed an approach called deconstructSigs, which determines a linear combi-
nation of the predefined signatures that best reconstructs the mutational profile of a single
tumor sample. It is a heuristic method based on the iterative application of the multiple
linear regression and removal of signatures with little exposure. With any decomposition
problem, it is important to verify how stable the solution is and confidently establish which
mutational signatures are present in a given sample. Huang et al. (47) addressed this prob-
lem from the perspective of input data perturbation and suboptimal solutions in a tool called
SignatureEstimation. They showed that some mutational signatures, such as APOBEC sig-
natures, are very stable while others, especially “flat” signatures, are not. It emphasizes
the importance of analyzing the confidence and stability of signature decomposition results.
Li et al. (48) proposed a framework, called SigLASSO, that jointly optimizes the signature
refitting and the likelihood of sampling, and provides a sparse and high-confidence solution.
Moreover, many of the de novo methods can be adapted for refitting. For example, SigPro-
filer offers a single sample mode, called SigProfilerSingleSample, that identifies the activity
of each predefined signature in the sample and assigns the probability for each signature to
cause a specific mutation type in the sample (4, 9). In the subsequent sections, we describe
other refitting approaches presented in the context of different applications.

3. Association with genomic features and sequence context

Methods for mutational signatures typically assume that even though the distribution of
sites vulnerable to mutations, known as mutation opportunity, can vary along the genome
due to genomic features like GC content, it is similar between different cancer genomes.
Locally, mutation rates are shaped by genomic or epigenomic features as well as specific
properties of the DNA damage and repair mechanisms. In recent years, it has been shown
that the activity of mutational processes along the genome can be influenced by large-scale
features, such as GC content (49), chromatin organization (50), transcription level, and
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orientation (2, 51), replication timing and direction (51-55), as well as, local chromatin
features — transcription factor binding sites (56, 57), nucleosomes (58), gene structure (59),
and non-canonical DNA motifs (60, 61), among others reviewed in (62, 63). For example,
replication and transcriptional mutational asymmetries have been found for most signatures
across different cancers (51, 54). In addition, the activity of the APOBEC enzyme family
selectively deaminates single-stranded cytosines exposed on the lagging strand during DNA
replication. Sometimes an activity of a mutational process is specifically localized, e.g.
UV-induced mutations are preferentially found in the DNA minor groove facing away from
nucleosomes due to the abundance of UV-induced pyrimidine dimers leading to CC > TT
being formed at these sites (58). As another example, C>T at CpG sites have a 10-20 fold
higher mutation rate due to the hypermutability of methylated CpG sites. However, CpG
islands that are enriched for CpG sites tend to have a lower rate of CpG transitions, as
most CpG sites in CpG islands are hypomethylated (64). All these global and local features
are major determinants of mutation distribution (19). In some cases, there might be clear
mechanistic explanations of such interplay between mutagenicity and genomic features, but
in most cases, they remain to be established.

There have been many approaches to analyze context dependencies. The most straight-
forward solution relies on the partition of the observed mutations into categories of particu-
lar interest based on their genomic location or features, e.g. exome, promoter, CpG island,
heterochromatin, repetitive regions, etc. Then each category of mutations can be analyzed
separately using NMF-based method by scaling the numbers of observed mutations to ac-
count for trinucleotide composition difference between the specific genomic category and
the whole genome (46, 65). Alternatively, these mutational opportunities can be included
directly into the statistical model like it was done in EMu (31) and signeR (32). Vohringer
and Gerstung proposed TensorSignatures method (66) that allows for simultaneous infer-
ence of mutational signatures across different genomic features. RepairSig (67) adopted a
similar approach that helps in identifying genomic determinants of DNA damage and re-
pair processes. In another approach, Alexandrov et al. (3) expanded the set of mutational
categories by incorporating the information on the transcriptional strand on which each mu-
tation took place. This doubles the number of mutational categories, because a mutation in
a transcribed region, annotated as a pyrimidine base substitution, can be either on the tran-
scribed or non-transcribed strand. Then, the transcriptional strand-specific signatures were
extracted using the original signature inference method, SigProfiler. Such feature-specific
signatures can be inferred in an analogous way for other features as well (54). Other ap-
proaches assign each individual mutation in a given sample a most likely mutational process
or signature that is responsible for causing the mutation (47, 51, 53). Then the dependency
between mutational processes and their genomic context is studied based on the specific
signature assignments and genomic features of the analyzed mutations.

Recently, it was observed that some signatures operate in sequential manner where
consecutive mutations tend to be the result of the same mutation signature (2, 53, 68).
Morganella et al. (53) identified groups of mutations of the same reference allele and on
the same strand believed to come from the same signature and termed them processive
groups. Supek and Lehner (68) performed a systematic analysis of clustered mutations and
identified nine mutational signatures that are specifically linked to local increased mutation
rates. SigMa (69) is a hidden Markov-based method that incorporates such properties of the
mutational signatures into the model. It captures sequential dependencies between close-by
mutations and allows for an accurate assignment of mutations to signatures. Following a

www. annualreviews.org « Mutational Signatures



similar reasoning, StickySig method (43) accounts for the stickiness (i.e., the tendency of
a certain signature to operate on consecutive mutations) and strand coordination of mu-
tational signatures. It models consecutive, although not necessarily close-by, mutations
that occur on the same strand as well as independent mutations. In summary, mutational
signatures have their origin in the interplay between the DNA damage caused by muta-
genic agents and processes, DNA repair mechanisms, as well as global and local genomic
features. For a given mutational process, different combinations of these factors can lead to
varying mutation opportunities and drastically different mutation patterns among individ-
ual genomes. Consequently, the number of newly inferred mutational signatures is growing
with the number of genomes being sequenced (9). To untangle the dependencies between
mutational processes and genomic contexts they are acting in, new methods that go beyond
the current paradigm of modeling mutational signatures are needed, see Section 5.

4. Linking mutational signatures to molecular causes

While mutational signatures may arise due to environmental factors, some signatures are
linked to genetic aberrations such as mutations or perturbed expression of DNA repair
pathways. Both computational and experimental approaches have been utilized to identify
such associations and shed light on the endogenous etiology.

Mutational signatures can accumulate due to the malfunction of DNA repair mecha-
nisms when mutations in related pathways lead to genetic inactivation. For instance, the
pattern of mutations attributed to Signature 3 is associated with biallelic inactivation of
BRCA1 or BRCA2, two core homologous recombination (HR) genes (3, 70, 71). HR is
a high-fidelity DNA repair mechanism for double-strand breaks (DSB). Other HR related
defects such as epigenetic silencing and somatic mutations in RAD51C can also yield char-
acteristic mutational signature similar to Signature 3 (70).

Several other mutational signatures were found to be caused by genetic mutations. A
study found that Signature 5 in urothelial tumors is significantly associated with somatic
mutations in ERCC2, which is a member of the NER-pathway (72). Another example is
the association found between Signature 18 and mutations in MUTYH, a member of the
BER DNA repair pathway (73). In addition, as shown in Section 5, a mutational signature
can be shaped jointly by two different mutations. For example, Haradhvala et al. showed
that composite signatures arise from a concurrent loss of proofreading (POLE or POLD1)
and mismatch repair function (74).

Kim et al. studied the associations of mutational signature strength with genetic muta-
tions using network-based approaches, investigating if a pathway inactivation due to genetic
alterations can lead to the accumulation of specific mutational signatures (71). Utilizing
a network-based optimization algorithm named NETPHIX (75), they uncovered several
subnetworks whose genetic alterations are associated with mutational signatures in breast
cancer. In particular, they studied the differences between clustered and disperse APOBEC
mutations. The proteins encoded by APOBEC gene family deaminate cytosines in single-
stranded DNA (ssDNA). Such deamination, if not properly repaired, can lead to C >T
or C >G mutations depending on how the resulting lesion is repaired. The strength of
APOBEC signatures depends not only on availability of the enzyme but also on the pres-
ence of ssDNA. APOBEC signatures (Signature 2 and 13) may arise as immune response
in cancer and understanding the etiology is critical to understanding tumor progression
(76, 77). Although both APOBEC signatures are known to be associated with APOBEC

Kim et al.



activities, several studies reported that clustered and dispersed mutations may have differ-
ent etiologies (68, 69, 76). Consistent with the previous studies, the network based analysis
found that dispersed mutations attributed to Signature 2 are associated with the alterations
in a very different subnetwork than the remaining APOBEC related signatures (71). Note
that the cause-effect relationship can be either direction — a mutation in a DNA repair gene
can cause a specific mutational signature, or the mutagenic processes may generate uncon-
trolled mutations or cancer drivers (see section 6). Interestingly, the subnetwork associated
with dispersed Signature 2 includes PIK3CA mutations, which are considered as resulting
from APOBEC related mutational signatures. However, the association remains significant
even after removing the patterns of APOBEC activities in the genomic region of PIK3CA,
suggesting the possibility of opposite relationships.

Some of the computationally identified associations of genetic alterations in humans
tumors were also validated in experimental studies. The validations can be conducted via
genetic manipulation techniques in various model systems (78). Using CRISPR-modified
human stem cell organoids, Drost et al. reproduced the mutational signatures driven by
the deficiency of mismatch repair gene MLH1 and cancer predisposition gene NTHL1 (79).
Zou et al. also recreated the mutational signatures observed in tumors by performing
knockouts of several DNA repair genes in an isogenic human-cell system (80). Furthermore,
Volkova et al. investigated the interplay of genotoxic exposure and DNA repair deficiency
by a systematic screening of mutant C. elegans exposed to various genotoxic factors and
characterized mutational patterns induced by environmental treatments (81). The study
experimentally demonstrated that mutational signatures are joint products of DNA damage
and repair mechanisms.

Using putative causes as additional covariates in the model can help identify mutational
signatures and the associations simultaneously. Robinson et al. (38) developed a proba-
bilistic topic model based method, named Tumor Covariate Signature Model (TCSM), to
learn mutational signatures and automatically infer how observed covariates (such as DNA
damage repair gene inactivations, cancer type, and/or demographic or lifestyle factors) are
associated with signature exposure. Robinson et al. performed two proof-of-concept ex-
periments. With a breast cancer dataset, they demonstrated that TCSM can be used to
predict HR deficient tumors and uncover the associated signature. In a lung cancer and
melanoma dataset, they used TCSM to impute cancer type from observed mutations, find-
ing supporting evidence for earlier studies that reported several TCGA lung cancers may
be misdiagnosed metastatic melanomas.

While most studies focused on the genetic aberration of DNA repair genes, some muta-
tional signatures have been linked also with the differential gene expression activities. For
example, MGMT expression level (a DNA repair gene involved in cellular defense against
mutagenesis and toxicity) may be associated with unique patterns of mutations as MGMT
silencing affects the direct repair mechanism via the gene (81, 82). Another example is the
expression levels of APOBEC family genes related to immune response activities, which are
correlated with the accumulation of mutations attributed to APOBEC related signatures
(53, 68, 69).

To identify associations of mutational signatures with gene expression activities at a
pathway level, Kim et al. performed a correlation analysis and subsequently clustered
the genes using consensus clustering. The analysis revealed several interesting network-
level associations. In particular, the different patterns between two clock-like signatures,
Signature 1 and 5, have been observed. The two signatures correlate with the patient’s
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age in many cancer types and thus known as “clock-like signatures” (83). However, these
two signatures are rarely correlated with each other, suggesting that they have distinct
etiologies. Indeed the aforementioned association analysis indicated that the magnitude of
Signature 1 is positively correlated with the expression activity of cell cycle genes, and thus
corresponds to the “biological clock”. On the other hand, Signature 5 shows correlation
patterns consistent with continuous exposure to environmental mutagens such as reactive
oxidative species (ROS) (72, 83, 84). The mutations arising due to exogenous factors
accumulate over time independent of cell cycle events. Grasping the etiologies of clock-
like signatures can provide an important foundation for studying cancer evolution as they
provide a direct measure of the genomic time scale of exposure.

Linking mutational signatures to molecular features can help understand the etiology
and develop personalized cancer therapy. However, due to the complex and dynamic nature
of tumor evolution, untangling the cause and effect relationship can be challenging and
requires further integrated and comprehensive analyses.

5. Toward deconvoluting complex multi-way relations between mutagenic
factors and mutational signatures

Traditional methods to infer mutational signatures assume that the signatures represent
additive processes. However, there is a growing understanding that mutagenic processes
are not necessarily additive (74, 81, 85). Instead, the mutational landscape of the cancer
genome should be seen as the end-effect of several interacting factors: the nature of DNA
damage, the distribution of sites that are vulnerable to the damage, and potential deficien-
cies of the repair mechanism responsible for repairing the “initial” damage. In particular,
it should be noted that DNA repair processes act by modifying the outcome of other muta-
gens. To account for such dependencies, under an additive model, different compositions of
DNA damage and repair deficiencies must be modeled with different signatures. This can
introduce a very large number of signatures and hamper their interpretability. For example,
the current set of COSMIC signatures contains eight signatures associated with deficiency
of Mismatch Repair (MMR) (a DNA repair process for recognizing and correcting mis-
matched nucleotides in complementary DNA strands). A recent study revealed that two of
these signatures are in fact composite signatures where two different types of DNA damage,
caused by mutations in polymerases POLE and POLD1, are accompanied by MMR, defi-
ciency (74). This suggests that many other signatures, especially those known to be related
to DNA repair deficiency might also be composite. This recognition prompted the ques-
tion of whether it is possible to decompose such complex signatures into their contributing
factors (74).

As a first step in this direction, Wojtowicz et al. introduced a new descriptor of muta-
tional signatures, RePrint (85). RePrint takes as input a signature obtained via an additive
model and, for each triple, computes conditional probability of each of three possible muta-
tions under the assumption that the triple is mutated. Specifically, recall that a mutation
signature is a vector describing probability distribution of mutation categories. In contrast,
RePrint of a signature is a vector of the same length but describing conditional probability
of each mutation category under the assumption that a mutation of the middle nucleotide
in the specific triple occurred. By the definition, conditional probabilities of the three pos-
sible mutations for each individual triple sum up to one. Wojtowicz et al. showed that the
similarity of RePrint signatures can indicate signatures that are likely to share common
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DNA repair deficiency mechanisms (85).

While RePrint provides a way to identify signatures that might share DNA repair defi-
ciency mechanisms, the approach was not designed to provide a decomposition of composite
signatures into contributing mutagenic factors. The first biologically realistic, non-additive
model to captures such decomposition is a recently proposed method REPAIRSIG (67). RE-
PAIRSIG explicitly models the composition of DNA damage processes and defective DNA
repair processes. The authors used the model to infer the signature of defective MMR
process in Breast Cancer (BRCA). The inferred signature was in good correspondence with
the experimentally derived signature (80). In addition, by modeling the mutational land-
scape as a composition of DNA damage and repair, they have been able to use a single
MMR signature to explain mutation data in TCGA (7) BRCA as opposed to several MMR,
deficiency signatures inferred by NMF-type models.

While additive models have provided many important insights, it is expected that new
more complex models will continue to emerge providing more complete perspectives on
mutational processes.

6. Mutation signatures and cancer evolution

The process of accumulating mutations is dynamic. Some types of mutations accumulate
steadily over the lifetime, and some occur as a consequence to exogenous processes such
as smoking and depend on the time and duration of the exposure. Yet other mutations
emerge in response to cancer-related endogenous processes occurring in the cell such as DNA
repair deficiency or specific cancer-driver mutations (see also Section 4). This prompted the
interest in studies of the dynamics of mutational processes across time and linking them to
cancer evolution.

Mutations due to continuous exposure to mutagenic processes are expected to accumu-
late with age. In particular, one of the clock signatures , Signature 1 (discussed in Section
4), is assumed to be the result of spontaneous deamination of 5-methylcytosine that can
occur during replication, suggesting that the strength of this signature should reflect the
number of past DNA replications (86, 87). Thus Signature 1 could potentially be used
as a clock for estimating the time of other mutagenic processes in cancer. However, the
“calibration ” of such a genetic clock remains challenging. Under the assumption that the
strength of Signature 1 is related to the number of replications, mutations due to this sig-
nature would first accumulate with rate dependent on the tissue renewal rate, and then
potentially accelerate during tumor growth. There are many unknown parameters in this
process, including the time of the emergence of the tumor. Despite these obstacles, a recent
study was able to utilize the basic principles behind this concept to estimate the timing of
the whole-genome duplication events relative to the time of patient diagnosis (87).

The activities of mutational signatures can also change over time. Methods to infer such
time dependencies typically rely on specific cancer-related “reference” events that can be
used for ordering the mutations as occurring before or after the event. For example, a recent
study uses such reference events to divide mutations into multiple stages: early, late, and
subclonal. The division between early and late is based on the relation to the whole-genome
duplication event, by assessing whether the mutation is present in both allelic copies. In
contrast, the late/subclonal timing is based on the ability to make a distinction between
subclonal and clonal mutations (87). Using such time partitioning, the study found, for
example, that APOBEC mutagenesis tends to be higher in the late clonal stage compared

www. annualreviews.org « Mutational Signatures

11



12

to the early stage while the exposures of signatures of defective MMR often increases from
clonal to subclonal stages (87).

An alternative approach to study the dynamics of mutational signatures has been pro-
posed in a recently developed method, TrackSig. TrackSig orders mutations by their inferred
population frequency — Cancer Cell Fraction (CCF). Given this ordering, it reconstructs
the “trajectories” of signature exposures by identifying intervals of constant signature ac-
tivities separated by computationally inferred “change points” (88). TrackSigFreq improves
on TrackSig by additionally utilizing variant allele frequencies to obtain optimal partition
into segments of constant signature activities (89). Researchers have recently introduced
two algorithms for analyzing mutational signatures and cancer evolution while moving be-
yond the approach from TrackSig. Abécassis et al. introduced the first model, CloneSig,
for simultaneously refitting mutational signatures and inferring the subclonal composition
of the tumor and each subclone’s relative frequency (90). Christensen et al. introduced a
refitting algorithm, PhySigs, for inferring exposures in cancer phylogenies (91). Given an
inferred phylogeny and set of active mutational signatures, PhySigs identifies which edges
of the phylogeny included “exposure shifts”, thus inferring (subtrees of) clones with iden-
tical exposures. PhySigs has the advantage of not assuming a linear order of mutations, as
mutations in different branches of a cancer phylogeny could have similar CCFs, although
obtaining high-quality cancer phylogenies at scale remains a challenge. Christensen et al.
analyzed one such dataset of high-quality phylogenies from Jamal-Hanjani et al. (92) and
found evidence of exposure shifts in 20 out of 91 analyzed lung cancers (91).

Despite significant progress, the evolutionary dynamics of mutation signatures is still
not fully understood. Challenges include difficulty to infer dynamics from typically static
data and complex dependencies between mutagenic processes.

7. Beyond cancer: Mutation signature analysis in germline and polymorphism
datasets

In parallel to the study of somatic mutations in cancer, researchers are investigating muta-
tion spectrum in healthy populations to understand genetic diversity and genome evolution.
In this regard, recent sequencing of thousands of genomes from family trios of Europeans
and smaller surveys of non-European populations has identified genomic and non-genomic
factors that impact the rate of new mutations, de novo mutation (DNM) (13, 14, 17, 93).
These studies have shown that, (i) both the age of the father and the mother are positively
correlated with the number of DNMs in an offspring, with the effect size of paternal age be-
ing larger, and (ii) the parental age effects differ by mutation types (13, 14). In accordance,
application of mutational signature analysis has shown that DNMs mainly comprise the two
clock-like mutational signatures (Signatures 1 and 5) and represent the impact of aging on
DNA (14, 94). Moreover, studies of parent-of-origin specific signatures have shown that as
father’s age, the C>T mutations at CpG sites increase at a faster rate than other mutation
types, and increasing mother’s age leads to more C>G mutations (13). The enrichment of
paternal CpG transitions accords with the temporal dynamics of methylation in germ cells,
consistent with the expectation that re-methylation takes place early during embryogenesis
in males, but very late (shortly before ovulation) in females (16, 95). Further, the spatial
distribution of maternal C>G mutations in genomic regions that also have elevated rates
of non-crossover gene conversions highlights double-strand breaks as an important source
of these mutations in aging oocytes (13, 14, 16, 93).
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By studying DNMs in a diverse set of human populations, Kessler et al. (17) showed
that there is no significant difference in the DNM rate between individuals of different
ancestries (European, African, and Latinos), though this is expected from small sample
sizes as the effects are likely to be subtle. A significant decrease was, however, observed
in the proportion of C >A and T >C mutations in the Amish individuals compared to
FEuropeans, even after accounting for parental age and other confounding factors. Kessler
et al. hypothesized that this might be due to the fact that Amish are exposed to fewer
environmental mutagens, leading to lower rates of DNA damage and hence lower mutation
rates (17). In sum, these analyses suggest an underappreciated role of DNA damage, in
addition to replication, as the source of new mutations in the germline.

Comparisons of mutation spectrum in polymorphism datasets have revealed a multitude
of differences across human populations. The strongest signal detected in humans is the
enrichment of TCC >TTC variants in Europeans and South Asians, relative to Africans or
Asians (11, 12). Application of NMF suggests this mutation is related to COSMIC signature
11, which is also enriched in melanoma cancers and may be related to UV exposure. Though
pyrimidine dimers leading to CC >TT mutations generated by UV radiation are not seen
in Europeans (12, 96), and it remains unclear how UV exposure could impact the germline.
Several other mutation types have also been shown to significantly differ among human
populations, however the magnitude of these effects are typically small (< 20%). In a
recent study, analysis of Neanderthal ancestry segments recovered from 27,566 Europeans
revealed differences in Neanderthal mutation spectrum compared to modern humans, with
a higher rate of C>G mutations and a lower rate of T>C and CpG>TpG mutations in
introgressed segments compared to the non-introgressed regions of the genome (97). DNM
studies have shown that these mutations track parental age effects, highlighting a role of life
history traits underlying some of the differences in mutation spectrum of modern humans
and Neanderthals (97).

While there is emerging evidence of rapid evolution of mutation signatures across in-
dividuals and populations, there is no clear mechanistic explanation for the observed pat-
terns. These differences could be due to a number of factors, such as demography (12),
selection in particular biased gene conversion (98), life-history traits (such as mean age
of reproduction) (13, 97, 99), environmental exposures(17) or even technical artifacts due
to sequencing technologies (100). Moreover, like cancer and somatic studies, mutations in
DNA polymerases or repair enzymes could in turn induce changes in the mutation rate
or spectrum, acting as modifiers of mutation rate. Unlike cancer studies, it is difficult to
directly measure historical exposures and relate the observed variation to the molecular
mechanisms. DNM data from more diverse populations, in particular large sample sizes,
are further needed to assess the impact of various factors in contributing to the de novo
and population mutational differences.

8. Conclusion

Steadily increasing collections of genomics data provide an unprecedented opportunity for
discovering and studying patterns of mutations across tumors and populations. These
patterns proved to be informative about mutagenic processes acting on genomes and, in
some cancer-related cases, suggestive of potential interventions. The importance of un-
derstanding these processes motivated the development of new computational methods to
identify mutational signatures, static and dynamic relations between them, dependence on
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genomics context, their relation to biological possesses within cells, environmental contribu-
tion, disease progression, aging, and evolution. Recent years witnessed an explosion of new
computational approaches and experimental studies leading to steady progress in this area.
However many questions remain open promising that computational studies of mutational
patterns will continue to provide exciting results in the coming years.
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