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Abstract

Mutations are the driving force of evolution, yet they underlie many

diseases and, in particular, cancer. They are thought to arise from a

combination of stochastic errors in DNA processing, naturally occur-

ring DNA damage (e.g., the spontaneous deamination of methylated

CpG sites), replication errors, and dysregulation of DNA repair mech-

anisms. High throughput sequencing has made it possible to gener-

ate large datasets to study mutational processes in health and disease.

Since the emergence of the first mutational process studies in 2012, this

field is gaining increasing attention and has already accumulated a host

of computational approaches and biomedical applications.
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1. Introduction

DNA molecules in our cells are targeted by diverse mutagenic processes. Such mutational

processes can act in germ cells contributing to species evolution (1), or in somatic cells,

accumulating with age and contributing to diseases, especially cancer. Recent mutation

rate studies of tumors have focussed on deciphering the somatically acquired changes in the

DNA of cancer cells to advance our understanding of the relation between mutagenic expo-

sures, DNA damage and repair and outcomes (such as cancer and uncontrolled cell growth).

Cancer genomes accumulate a large number of somatic mutations resulting from various en-

dogenous and exogenous causes, including normal DNA damage and repair, cancer-related

aberrations of the DNA maintenance machinery, as well as mutations triggered by car-

cinogenic exposures. Most mutations are typically harmless, but they provide a window

into mutational processes as different mutagenic processes result in characteristic muta-

tional patterns in the genome, referred to as mutational signatures (2–4). Identifying the

mutagenic processes underlying the observed mutational signatures is an important step

toward understanding tumor genesis and cancer evolution. Moreover, the understanding

of mutational processes acting on a patient’s genome might also help to develop personal-

ized therapies. For example, patients with Homologous Recombination Deficiency (HRD)

benefit from PARP inhibitor therapy (5). At the same time, HRD leaves a characteristic

mutational signature in the patient’s genome. Thus, the presence of this signature can be

used as a marker for PARP inhibitor therapy (6). However, the etiologies of many sig-

natures are still not fully understood, and developing methods facilitating the association

of signatures to potential causes has been a subject of intense study. Similarly, there is a

growing understanding that the emergence of mutation patterns is often context-specific,

prompting studies directed to understanding this context-dependence.

Access to steadily increasing genomic data sets has stimulated the development of com-

putational approaches to address the above-mentioned questions. In the past decade, con-

sortia such as The Cancer Genome Atlas (TCGA) (7) and the International Cancer Genome

Consortium (ICGC) (8) have produced datasets of millions of somatic mutations from more

than 35 cancer types. These datasets have enabled researchers to search for patterns of

somatic mutations across thousands of tumors. Nik-Zainal et al. (2) and Alexandrov et

al. (3, 4) were the first to model mutations observed in tumors as a mixture of hidden

mutational signatures. Theirs and subsequent work (9) has identified almost 49 validated

mutation signatures (10) and mutation signature analysis has now become a standard com-

ponent of cancer genome analysis pipelines.

Beyond cancer studies, analysis of the mutation signatures of healthy individuals (or

non-disease cases) has been also very fruitful in understanding the mechanisms that play a

role in embryogenesis, development and evolution. In this regard, studies of de novo muta-

tions and polymorphisms in humans has been particularly informative about the origin of

mutations, its dependence on age and other factors, and heterogeneity in rates and patterns

across individuals and species (11–17). Yet, large gaps remain in connecting exposures to

outcomes and in evaluation of the similarities and differences in the mutational landscape

of the germline and soma.

2. Computational inference of mutational signatures and their activity

Mutational signatures are most commonly modeled as a set P of signatures that are exposed

at different frequencies across genomes (2, 4). In this model, each signature is represented
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as a multinomial distribution over a set of mutation categories. Most commonly, categories

are formed based on the mutational change (6 choices1; C>A, C>G, C>T, T>A, T>C,

T>G) and the trinucleotide context in which the mutation occurs yielding 96 mutation

categories (e.g., TCC>TAC, CAG>CTG, etc.) or sometimes using extended context, as

large as seven bases on either side of the mutation as this may explain larger variation

in mutation rate (18, 19). The proportion of different mutation categories is referred to

as the ’mutation spectrum’ and each individual’s genome is then represented as a linear

combination of the signatures, where the number of mutations caused by a given signature

is called its exposure.

Following the terminology of Omichessan et al. (20), researchers have focused on solving

two broad classes of computational problems related to mutational signatures. In the de

novo problem, the goal is to infer both the signatures and compute their exposures in

the cohort. This was the initial focus of research in the seminal works in this area, and

research on this problem continues apace. In the refitting problem, the goal is to infer

the exposures of an existing set of signatures in a new cohort of individuals. The refitting

problem became critical after the Catalogue of Somatic Mutations in Cancer (COSMIC)

organization assembled an initial catalogue of validated mutational signatures, and refitting

methods are now arguably more widely used than de novo methods.

In the rest of this section, we provide an overview of methods for both ideas, focusing

on the most widely used approaches but also discussing active areas of research and open

questions. We also identify key methodological commonalities and differences. For ease

of exposition, we use the following notation throughout the section. We assume that the

primary inputs are mutation counts of m individuals across n mutation categories, most

commonly given in the m× n matrix M . We assume that the signatures matrix P (which

is either inferred or given) is a k × n matrix where each signature (row) is a probability

distribution. We also assume that the exposures matrix E is an m× k matrix. We note to

learn about the mutational processes some studies compare mutation spectrum or mutation

signatures across individuals.

2.1. Methods for inferring mutational signatures de novo

The standard methods for inferring mutational signatures de novo are easiest to understand

as a typical latent variable inference problem. The observed variables are the mutation

counts per patient, i.e. M . The latent variables (parameters) are the signatures P (global,

i.e. shared by all genomes) and the exposures E (local, i.e. differ by individual). Approaches

for modeling M have largely fallen in two camps. The original and most common approach

is non-negative matrix factorization (NMF) (21, 22). More recently, researchers have begun

exploring hierarchical probabilistic graphical models, in part because they allow the addition

of observed and latent variables without making inference algorithms significantly more

complicated.

2.1.1. Non-negative matrix factorizations. NMF methods for the de novo problem are the

most widely used and come in several different flavors. In its simplest form, NMF is solving

1We follow the standard of referring to each substitution’s reference base as the pyrimidine of
the base pair, though this also includes the corresponding variant type on the reverse complement
strand
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an optimization problem of minimizing the reconstruction error of observed matrix M given

inferred values for P,E and a divergence function d:

argmin
E,P

d(M,EP ), 1.

where M,E,P are all non-negative. While solving this optimization problem in its exact and

approximate forms is NP-complete (23, 24) and there is no guarantee of a single optimal

solution, there are several heuristics that seem to do well in practice. In particular, the

multiplicative update method of Lee and Seung (21) is the most commonly used. Most

forms of NMF have at least one hyperparameter: namely, the rank k of the latent matrices

E,P .

NMF also admits different probabilistic interpretations and/or extensions. One advan-

tage of the simple form of NMF is that it can be interpreted as a probabilistic model,

depending on the choice of divergence d. In the case where d is the Frobenius norm, mini-

mizing the reconstruction error of M is optimal assuming Gaussian noise (25). In the case

where d is the Kullback-Leibler Divergence (KLD), minimizing the reconstruction error of

M is equivalent to finding the maximum likelihood solution where M is Poisson-distributed

given E and P (26), which is a natural approach for count data. NMF can also be solved as

a Bayesian inference problem where priors are placed on the latent variables and/or where

the solution is constrained by regularization factors (e.g. for sparsity).

For the specific application to mutational signatures, a wide variety of NMF meth-

ods have been introduced. The original and one of the most commonly used methods is

SigProfiler from Alexandrov et al. (4), which solves the problem in Equation 1 where the

divergence is the Frobenius norm. More recently, SigProfiler has begun using the KLD

divergence (9). The other most commonly used method is SignatureAnalyzer, first used in

Kasar et al. (27) and introduced by Kim et al. (28). SignatureAnalyzer uses a Bayesian

form of NMF called Automatic Relevance Determination NMF that, in addition to inferring

the parameters E,P , automatically infers the rank k of the latent matrices (29). Forms of

these two methods were both used for identifying mutational signatures in the International

Cancer Genome Consortium (ICGC)’s Pan-Cancer Analysis of Whole-Genomes (PCAWG)

project that are now reported in the COSMIC database version 3 (9, 30).

There are other, less widely-used methods for mutational signatures that use differ-

ent forms of NMF. Fischer et al. (31) introduced EMu, which uses a statistical form of

NMF that is solved as a maximum likelihood problem. Rosales et al. (32) introduced

signeR, a Bayesian NMF where the observed matrix M is Poisson-distributed with rates

set by the latent matrices E,P which have Gamma priors, and a Markov chain Monte

Carlo expectation-maximization algorithm is used for inference. Critically, the Bayesian

form allows sampling from the posterior, both for data-driven selection of the number k of

signatures and to test the significance of differences in inferred parameters (e.g. whether

two groups have significantly different exposure to a given signature). Both Fischer and

Rosales also admit additional information in the form of the trinucleotide composition of

each sequenced region (which differ for, e.g., whole-genome versus whole-exome studies),

which can bias the inferred signatures. Covington et al. (33), Goncearenco et al. (34) and

Ramazzotti et al. (35) each used forms of NMF that encourage sparsity in the signatures

and/or the exposures.

2.1.2. Other hierarchical probabilistic graphical models. Researchers have also considered

probabilistic graphical models with a different form than NMF for inferring mutational
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signatures de novo. The key difference comes in as an additional layer of hierarchy in

the generative story: instead of modeling counts, they model each individual mutation. In

other words, each mutation has a latent variable that indicates which signature generated it.

This additional resolution can be important for modeling phenomena that vary by mutation

within the same individual’s genome. Another advantage of these models is that it is simple

to add or expand the hierarchy in the generative process, either to change how signatures

or mutations are modeled. A final advantage of these methods is that they can leverage

decades of research in related fields, such as natural language processing. The field of topic

model research is particularly relevant. In a classical topic model such as Latent Dirichlet

Allocation (LDA) (36), a corpus of documents’ word counts are modeled as a combination

of topics with per document activations. In the case of mutational signatures, the topics

are signatures, the words are mutation categories, and the activations are exposures.

Such hierarchical probabilistic graphical models for inferring mutational signatures fall

into four different categories, based on their purpose. In the first class is the first such model,

pmsignatures, which was introduced in 2015 with the purpose of changing how signatures

are represented to reduce the parameter explosion that would happen if researchers wanted

to model a greater number of flanking bases per mutation (37). In the second class are

methods that integrate additional observed data. Robinson et al. (38) adapted a structural

topic model (39) to model associations between observed covariates (such as cancer type

or DNA damage repair pathway inactivation status) and per patient exposures. Funnell et

al. (40) adapted a multi-modal, correlated topic model (41) to infer signatures and exposures

for both single base substitution and structural variation data. Additional methods that

take genomic location data into account are detailed in the Context Dependency Section

below. In the third class are methods with an additional layer of hierarchy for distinguishing

between groups of individuals with similar exposures. The models from Yang et al. (42) and

Sason et al. (43) both fall into this category. Finally, the fourth class includes methods that

use different optimization algorithms. For example, Matsutani et al. (44) use a variational

Bayes form of LDA to better select the number k of signatures active in a cohort.

2.1.3. Hyperparameter selection and other practical considerations. One challenge shared

by nearly all de novo methods is hyperparameter selection. The most common hyperparam-

eter is the number k of signatures. Approaches for inferring k range from cross-validation

(e.g. (38, 45)) to using the Bayesian information criterion (e.g. (32)) to Alexandrov et al.’s

approach that combines bootstrapping with a measure of stability and reconstruction er-

ror (4). Most commonly, researchers only search for k within a relatively narrow range.

Even methods such as SignatureAnalyzer that automatically infer the rank have other hy-

perparameters that must be selected.

Another challenge is that the number of mutations per tumor can vary greatly and

that this mutation rate and signature activity varies greatly by cancer type. Further,

even if the mutation rate is fixed, the number of mutations reported varies by sequencing

method, with generally 100 times more mutations in whole-genome samples than whole-

exome. Consequently, a key challenge all the methods face is in how to weigh individuals

and/or population/cancer types, such that the ones with the different mutation rates or

active signatures do not overwhelm the signal of rarer signatures. Alexandrov et al. (3)

took the approach of running their method on each cancer type individually and then all

cancer types together, reporting a ‘consensus’ of signatures across cancer types. Kim et

al. (28) sought to address the high variance in mutation rate within endometrial cancer
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by ‘splitting’ samples with extremely high mutation rates into multiple rows within the

M matrix. Versions of both of these approaches were used in the mutational signatures

project of ICGC PCAWG (9), where different NMF analyses were performed by cancer

type, sequencing type, and ‘hypermutator’ status.

2.2. Methods for refitting mutational signatures

In the refitting approaches, it is assumed that the set of mutational signatures is given

(matrix P ), in addition to the count matrix M , and the goal is to infer the activity of

each signature in every sample (exposure matrix E). The signature matrix can consist of

either the full set or a subset of COSMIC signatures or signatures inferred from a specific

cancer cohort using a de novo method described above. The refitting methods are especially

useful when the analyzed set of mutations is too small for de novo signature inference (3),

for example, in the case of small sample size, targeted sequencing panels, samples with

few mutations such as in healthy populations or in slowly growing tumors, or analysis of

mutations located only in the specific genomic region of interest. This allows extending

the applicability of validated mutational signatures in small targeted studies and even in

clinical settings for individual patients.

There is a wide variety of refitting methods that have been introduced. Here, we present

selected representative approaches; see also a review by Omichessan et al. (20). Rosenthal

et al. (46) developed an approach called deconstructSigs, which determines a linear combi-

nation of the predefined signatures that best reconstructs the mutational profile of a single

tumor sample. It is a heuristic method based on the iterative application of the multiple

linear regression and removal of signatures with little exposure. With any decomposition

problem, it is important to verify how stable the solution is and confidently establish which

mutational signatures are present in a given sample. Huang et al. (47) addressed this prob-

lem from the perspective of input data perturbation and suboptimal solutions in a tool called

SignatureEstimation. They showed that some mutational signatures, such as APOBEC sig-

natures, are very stable while others, especially “flat” signatures, are not. It emphasizes

the importance of analyzing the confidence and stability of signature decomposition results.

Li et al. (48) proposed a framework, called SigLASSO, that jointly optimizes the signature

refitting and the likelihood of sampling, and provides a sparse and high-confidence solution.

Moreover, many of the de novo methods can be adapted for refitting. For example, SigPro-

filer offers a single sample mode, called SigProfilerSingleSample, that identifies the activity

of each predefined signature in the sample and assigns the probability for each signature to

cause a specific mutation type in the sample (4, 9). In the subsequent sections, we describe

other refitting approaches presented in the context of different applications.

3. Association with genomic features and sequence context

Methods for mutational signatures typically assume that even though the distribution of

sites vulnerable to mutations, known as mutation opportunity, can vary along the genome

due to genomic features like GC content, it is similar between different cancer genomes.

Locally, mutation rates are shaped by genomic or epigenomic features as well as specific

properties of the DNA damage and repair mechanisms. In recent years, it has been shown

that the activity of mutational processes along the genome can be influenced by large-scale

features, such as GC content (49), chromatin organization (50), transcription level, and
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orientation (2, 51), replication timing and direction (51–55), as well as, local chromatin

features – transcription factor binding sites (56, 57), nucleosomes (58), gene structure (59),

and non-canonical DNA motifs (60, 61), among others reviewed in (62, 63). For example,

replication and transcriptional mutational asymmetries have been found for most signatures

across different cancers (51, 54). In addition, the activity of the APOBEC enzyme family

selectively deaminates single-stranded cytosines exposed on the lagging strand during DNA

replication. Sometimes an activity of a mutational process is specifically localized, e.g.

UV-induced mutations are preferentially found in the DNA minor groove facing away from

nucleosomes due to the abundance of UV-induced pyrimidine dimers leading to CC > TT

being formed at these sites (58). As another example, C>T at CpG sites have a 10-20 fold

higher mutation rate due to the hypermutability of methylated CpG sites. However, CpG

islands that are enriched for CpG sites tend to have a lower rate of CpG transitions, as

most CpG sites in CpG islands are hypomethylated (64). All these global and local features

are major determinants of mutation distribution (19). In some cases, there might be clear

mechanistic explanations of such interplay between mutagenicity and genomic features, but

in most cases, they remain to be established.

There have been many approaches to analyze context dependencies. The most straight-

forward solution relies on the partition of the observed mutations into categories of particu-

lar interest based on their genomic location or features, e.g. exome, promoter, CpG island,

heterochromatin, repetitive regions, etc. Then each category of mutations can be analyzed

separately using NMF-based method by scaling the numbers of observed mutations to ac-

count for trinucleotide composition difference between the specific genomic category and

the whole genome (46, 65). Alternatively, these mutational opportunities can be included

directly into the statistical model like it was done in EMu (31) and signeR (32). Vöhringer

and Gerstung proposed TensorSignatures method (66) that allows for simultaneous infer-

ence of mutational signatures across different genomic features. RepairSig (67) adopted a

similar approach that helps in identifying genomic determinants of DNA damage and re-

pair processes. In another approach, Alexandrov et al. (3) expanded the set of mutational

categories by incorporating the information on the transcriptional strand on which each mu-

tation took place. This doubles the number of mutational categories, because a mutation in

a transcribed region, annotated as a pyrimidine base substitution, can be either on the tran-

scribed or non-transcribed strand. Then, the transcriptional strand-specific signatures were

extracted using the original signature inference method, SigProfiler. Such feature-specific

signatures can be inferred in an analogous way for other features as well (54). Other ap-

proaches assign each individual mutation in a given sample a most likely mutational process

or signature that is responsible for causing the mutation (47, 51, 53). Then the dependency

between mutational processes and their genomic context is studied based on the specific

signature assignments and genomic features of the analyzed mutations.

Recently, it was observed that some signatures operate in sequential manner where

consecutive mutations tend to be the result of the same mutation signature (2, 53, 68).

Morganella et al. (53) identified groups of mutations of the same reference allele and on

the same strand believed to come from the same signature and termed them processive

groups. Supek and Lehner (68) performed a systematic analysis of clustered mutations and

identified nine mutational signatures that are specifically linked to local increased mutation

rates. SigMa (69) is a hidden Markov-based method that incorporates such properties of the

mutational signatures into the model. It captures sequential dependencies between close-by

mutations and allows for an accurate assignment of mutations to signatures. Following a
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similar reasoning, StickySig method (43) accounts for the stickiness (i.e., the tendency of

a certain signature to operate on consecutive mutations) and strand coordination of mu-

tational signatures. It models consecutive, although not necessarily close-by, mutations

that occur on the same strand as well as independent mutations. In summary, mutational

signatures have their origin in the interplay between the DNA damage caused by muta-

genic agents and processes, DNA repair mechanisms, as well as global and local genomic

features. For a given mutational process, different combinations of these factors can lead to

varying mutation opportunities and drastically different mutation patterns among individ-

ual genomes. Consequently, the number of newly inferred mutational signatures is growing

with the number of genomes being sequenced (9). To untangle the dependencies between

mutational processes and genomic contexts they are acting in, new methods that go beyond

the current paradigm of modeling mutational signatures are needed, see Section 5.

4. Linking mutational signatures to molecular causes

While mutational signatures may arise due to environmental factors, some signatures are

linked to genetic aberrations such as mutations or perturbed expression of DNA repair

pathways. Both computational and experimental approaches have been utilized to identify

such associations and shed light on the endogenous etiology.

Mutational signatures can accumulate due to the malfunction of DNA repair mecha-

nisms when mutations in related pathways lead to genetic inactivation. For instance, the

pattern of mutations attributed to Signature 3 is associated with biallelic inactivation of

BRCA1 or BRCA2, two core homologous recombination (HR) genes (3, 70, 71). HR is

a high-fidelity DNA repair mechanism for double-strand breaks (DSB). Other HR related

defects such as epigenetic silencing and somatic mutations in RAD51C can also yield char-

acteristic mutational signature similar to Signature 3 (70).

Several other mutational signatures were found to be caused by genetic mutations. A

study found that Signature 5 in urothelial tumors is significantly associated with somatic

mutations in ERCC2, which is a member of the NER-pathway (72). Another example is

the association found between Signature 18 and mutations in MUTYH, a member of the

BER DNA repair pathway (73). In addition, as shown in Section 5, a mutational signature

can be shaped jointly by two different mutations. For example, Haradhvala et al. showed

that composite signatures arise from a concurrent loss of proofreading (POLE or POLD1)

and mismatch repair function (74).

Kim et al. studied the associations of mutational signature strength with genetic muta-

tions using network-based approaches, investigating if a pathway inactivation due to genetic

alterations can lead to the accumulation of specific mutational signatures (71). Utilizing

a network-based optimization algorithm named NETPHIX (75), they uncovered several

subnetworks whose genetic alterations are associated with mutational signatures in breast

cancer. In particular, they studied the differences between clustered and disperse APOBEC

mutations. The proteins encoded by APOBEC gene family deaminate cytosines in single-

stranded DNA (ssDNA). Such deamination, if not properly repaired, can lead to C >T

or C >G mutations depending on how the resulting lesion is repaired. The strength of

APOBEC signatures depends not only on availability of the enzyme but also on the pres-

ence of ssDNA. APOBEC signatures (Signature 2 and 13) may arise as immune response

in cancer and understanding the etiology is critical to understanding tumor progression

(76, 77). Although both APOBEC signatures are known to be associated with APOBEC
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activities, several studies reported that clustered and dispersed mutations may have differ-

ent etiologies (68, 69, 76). Consistent with the previous studies, the network based analysis

found that dispersed mutations attributed to Signature 2 are associated with the alterations

in a very different subnetwork than the remaining APOBEC related signatures (71). Note

that the cause-effect relationship can be either direction – a mutation in a DNA repair gene

can cause a specific mutational signature, or the mutagenic processes may generate uncon-

trolled mutations or cancer drivers (see section 6). Interestingly, the subnetwork associated

with dispersed Signature 2 includes PIK3CA mutations, which are considered as resulting

from APOBEC related mutational signatures. However, the association remains significant

even after removing the patterns of APOBEC activities in the genomic region of PIK3CA,

suggesting the possibility of opposite relationships.

Some of the computationally identified associations of genetic alterations in humans

tumors were also validated in experimental studies. The validations can be conducted via

genetic manipulation techniques in various model systems (78). Using CRISPR-modified

human stem cell organoids, Drost et al. reproduced the mutational signatures driven by

the deficiency of mismatch repair gene MLH1 and cancer predisposition gene NTHL1 (79).

Zou et al. also recreated the mutational signatures observed in tumors by performing

knockouts of several DNA repair genes in an isogenic human-cell system (80). Furthermore,

Volkova et al. investigated the interplay of genotoxic exposure and DNA repair deficiency

by a systematic screening of mutant C. elegans exposed to various genotoxic factors and

characterized mutational patterns induced by environmental treatments (81). The study

experimentally demonstrated that mutational signatures are joint products of DNA damage

and repair mechanisms.

Using putative causes as additional covariates in the model can help identify mutational

signatures and the associations simultaneously. Robinson et al. (38) developed a proba-

bilistic topic model based method, named Tumor Covariate Signature Model (TCSM), to

learn mutational signatures and automatically infer how observed covariates (such as DNA

damage repair gene inactivations, cancer type, and/or demographic or lifestyle factors) are

associated with signature exposure. Robinson et al. performed two proof-of-concept ex-

periments. With a breast cancer dataset, they demonstrated that TCSM can be used to

predict HR deficient tumors and uncover the associated signature. In a lung cancer and

melanoma dataset, they used TCSM to impute cancer type from observed mutations, find-

ing supporting evidence for earlier studies that reported several TCGA lung cancers may

be misdiagnosed metastatic melanomas.

While most studies focused on the genetic aberration of DNA repair genes, some muta-

tional signatures have been linked also with the differential gene expression activities. For

example, MGMT expression level (a DNA repair gene involved in cellular defense against

mutagenesis and toxicity) may be associated with unique patterns of mutations as MGMT

silencing affects the direct repair mechanism via the gene (81, 82). Another example is the

expression levels of APOBEC family genes related to immune response activities, which are

correlated with the accumulation of mutations attributed to APOBEC related signatures

(53, 68, 69).

To identify associations of mutational signatures with gene expression activities at a

pathway level, Kim et al. performed a correlation analysis and subsequently clustered

the genes using consensus clustering. The analysis revealed several interesting network-

level associations. In particular, the different patterns between two clock-like signatures,

Signature 1 and 5, have been observed. The two signatures correlate with the patient’s
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age in many cancer types and thus known as “clock-like signatures” (83). However, these

two signatures are rarely correlated with each other, suggesting that they have distinct

etiologies. Indeed the aforementioned association analysis indicated that the magnitude of

Signature 1 is positively correlated with the expression activity of cell cycle genes, and thus

corresponds to the “biological clock”. On the other hand, Signature 5 shows correlation

patterns consistent with continuous exposure to environmental mutagens such as reactive

oxidative species (ROS) (72, 83, 84). The mutations arising due to exogenous factors

accumulate over time independent of cell cycle events. Grasping the etiologies of clock-

like signatures can provide an important foundation for studying cancer evolution as they

provide a direct measure of the genomic time scale of exposure.

Linking mutational signatures to molecular features can help understand the etiology

and develop personalized cancer therapy. However, due to the complex and dynamic nature

of tumor evolution, untangling the cause and effect relationship can be challenging and

requires further integrated and comprehensive analyses.

5. Toward deconvoluting complex multi-way relations between mutagenic
factors and mutational signatures

Traditional methods to infer mutational signatures assume that the signatures represent

additive processes. However, there is a growing understanding that mutagenic processes

are not necessarily additive (74, 81, 85). Instead, the mutational landscape of the cancer

genome should be seen as the end-effect of several interacting factors: the nature of DNA

damage, the distribution of sites that are vulnerable to the damage, and potential deficien-

cies of the repair mechanism responsible for repairing the “initial” damage. In particular,

it should be noted that DNA repair processes act by modifying the outcome of other muta-

gens. To account for such dependencies, under an additive model, different compositions of

DNA damage and repair deficiencies must be modeled with different signatures. This can

introduce a very large number of signatures and hamper their interpretability. For example,

the current set of COSMIC signatures contains eight signatures associated with deficiency

of Mismatch Repair (MMR) (a DNA repair process for recognizing and correcting mis-

matched nucleotides in complementary DNA strands). A recent study revealed that two of

these signatures are in fact composite signatures where two different types of DNA damage,

caused by mutations in polymerases POLE and POLD1, are accompanied by MMR defi-

ciency (74). This suggests that many other signatures, especially those known to be related

to DNA repair deficiency might also be composite. This recognition prompted the ques-

tion of whether it is possible to decompose such complex signatures into their contributing

factors (74).

As a first step in this direction, Wojtowicz et al. introduced a new descriptor of muta-

tional signatures, RePrint (85). RePrint takes as input a signature obtained via an additive

model and, for each triple, computes conditional probability of each of three possible muta-

tions under the assumption that the triple is mutated. Specifically, recall that a mutation

signature is a vector describing probability distribution of mutation categories. In contrast,

RePrint of a signature is a vector of the same length but describing conditional probability

of each mutation category under the assumption that a mutation of the middle nucleotide

in the specific triple occurred. By the definition, conditional probabilities of the three pos-

sible mutations for each individual triple sum up to one. Wojtowicz et al. showed that the

similarity of RePrint signatures can indicate signatures that are likely to share common
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DNA repair deficiency mechanisms (85).

While RePrint provides a way to identify signatures that might share DNA repair defi-

ciency mechanisms, the approach was not designed to provide a decomposition of composite

signatures into contributing mutagenic factors. The first biologically realistic, non-additive

model to captures such decomposition is a recently proposed method RepairSig (67). Re-

pairSig explicitly models the composition of DNA damage processes and defective DNA

repair processes. The authors used the model to infer the signature of defective MMR

process in Breast Cancer (BRCA). The inferred signature was in good correspondence with

the experimentally derived signature (80). In addition, by modeling the mutational land-

scape as a composition of DNA damage and repair, they have been able to use a single

MMR signature to explain mutation data in TCGA (7) BRCA as opposed to several MMR

deficiency signatures inferred by NMF-type models.

While additive models have provided many important insights, it is expected that new

more complex models will continue to emerge providing more complete perspectives on

mutational processes.

6. Mutation signatures and cancer evolution

The process of accumulating mutations is dynamic. Some types of mutations accumulate

steadily over the lifetime, and some occur as a consequence to exogenous processes such

as smoking and depend on the time and duration of the exposure. Yet other mutations

emerge in response to cancer-related endogenous processes occurring in the cell such as DNA

repair deficiency or specific cancer-driver mutations (see also Section 4). This prompted the

interest in studies of the dynamics of mutational processes across time and linking them to

cancer evolution.

Mutations due to continuous exposure to mutagenic processes are expected to accumu-

late with age. In particular, one of the clock signatures , Signature 1 (discussed in Section

4), is assumed to be the result of spontaneous deamination of 5-methylcytosine that can

occur during replication, suggesting that the strength of this signature should reflect the

number of past DNA replications (86, 87). Thus Signature 1 could potentially be used

as a clock for estimating the time of other mutagenic processes in cancer. However, the

“calibration ” of such a genetic clock remains challenging. Under the assumption that the

strength of Signature 1 is related to the number of replications, mutations due to this sig-

nature would first accumulate with rate dependent on the tissue renewal rate, and then

potentially accelerate during tumor growth. There are many unknown parameters in this

process, including the time of the emergence of the tumor. Despite these obstacles, a recent

study was able to utilize the basic principles behind this concept to estimate the timing of

the whole-genome duplication events relative to the time of patient diagnosis (87).

The activities of mutational signatures can also change over time. Methods to infer such

time dependencies typically rely on specific cancer-related “reference” events that can be

used for ordering the mutations as occurring before or after the event. For example, a recent

study uses such reference events to divide mutations into multiple stages: early, late, and

subclonal. The division between early and late is based on the relation to the whole-genome

duplication event, by assessing whether the mutation is present in both allelic copies. In

contrast, the late/subclonal timing is based on the ability to make a distinction between

subclonal and clonal mutations (87). Using such time partitioning, the study found, for

example, that APOBEC mutagenesis tends to be higher in the late clonal stage compared
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to the early stage while the exposures of signatures of defective MMR often increases from

clonal to subclonal stages (87).

An alternative approach to study the dynamics of mutational signatures has been pro-

posed in a recently developed method, TrackSig. TrackSig orders mutations by their inferred

population frequency – Cancer Cell Fraction (CCF). Given this ordering, it reconstructs

the “trajectories” of signature exposures by identifying intervals of constant signature ac-

tivities separated by computationally inferred “change points” (88). TrackSigFreq improves

on TrackSig by additionally utilizing variant allele frequencies to obtain optimal partition

into segments of constant signature activities (89). Researchers have recently introduced

two algorithms for analyzing mutational signatures and cancer evolution while moving be-

yond the approach from TrackSig. Abécassis et al. introduced the first model, CloneSig,

for simultaneously refitting mutational signatures and inferring the subclonal composition

of the tumor and each subclone’s relative frequency (90). Christensen et al. introduced a

refitting algorithm, PhySigs, for inferring exposures in cancer phylogenies (91). Given an

inferred phylogeny and set of active mutational signatures, PhySigs identifies which edges

of the phylogeny included “exposure shifts”, thus inferring (subtrees of) clones with iden-

tical exposures. PhySigs has the advantage of not assuming a linear order of mutations, as

mutations in different branches of a cancer phylogeny could have similar CCFs, although

obtaining high-quality cancer phylogenies at scale remains a challenge. Christensen et al.

analyzed one such dataset of high-quality phylogenies from Jamal-Hanjani et al. (92) and

found evidence of exposure shifts in 20 out of 91 analyzed lung cancers (91).

Despite significant progress, the evolutionary dynamics of mutation signatures is still

not fully understood. Challenges include difficulty to infer dynamics from typically static

data and complex dependencies between mutagenic processes.

7. Beyond cancer: Mutation signature analysis in germline and polymorphism
datasets

In parallel to the study of somatic mutations in cancer, researchers are investigating muta-

tion spectrum in healthy populations to understand genetic diversity and genome evolution.

In this regard, recent sequencing of thousands of genomes from family trios of Europeans

and smaller surveys of non-European populations has identified genomic and non-genomic

factors that impact the rate of new mutations, de novo mutation (DNM) (13, 14, 17, 93).

These studies have shown that, (i) both the age of the father and the mother are positively

correlated with the number of DNMs in an offspring, with the effect size of paternal age be-

ing larger, and (ii) the parental age effects differ by mutation types (13, 14). In accordance,

application of mutational signature analysis has shown that DNMs mainly comprise the two

clock-like mutational signatures (Signatures 1 and 5) and represent the impact of aging on

DNA (14, 94). Moreover, studies of parent-of-origin specific signatures have shown that as

father’s age, the C>T mutations at CpG sites increase at a faster rate than other mutation

types, and increasing mother’s age leads to more C>G mutations (13). The enrichment of

paternal CpG transitions accords with the temporal dynamics of methylation in germ cells,

consistent with the expectation that re-methylation takes place early during embryogenesis

in males, but very late (shortly before ovulation) in females (16, 95). Further, the spatial

distribution of maternal C>G mutations in genomic regions that also have elevated rates

of non-crossover gene conversions highlights double-strand breaks as an important source

of these mutations in aging oocytes (13, 14, 16, 93).
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By studying DNMs in a diverse set of human populations, Kessler et al. (17) showed

that there is no significant difference in the DNM rate between individuals of different

ancestries (European, African, and Latinos), though this is expected from small sample

sizes as the effects are likely to be subtle. A significant decrease was, however, observed

in the proportion of C >A and T >C mutations in the Amish individuals compared to

Europeans, even after accounting for parental age and other confounding factors. Kessler

et al. hypothesized that this might be due to the fact that Amish are exposed to fewer

environmental mutagens, leading to lower rates of DNA damage and hence lower mutation

rates (17). In sum, these analyses suggest an underappreciated role of DNA damage, in

addition to replication, as the source of new mutations in the germline.

Comparisons of mutation spectrum in polymorphism datasets have revealed a multitude

of differences across human populations. The strongest signal detected in humans is the

enrichment of TCC >TTC variants in Europeans and South Asians, relative to Africans or

Asians (11, 12). Application of NMF suggests this mutation is related to COSMIC signature

11, which is also enriched in melanoma cancers and may be related to UV exposure. Though

pyrimidine dimers leading to CC >TT mutations generated by UV radiation are not seen

in Europeans (12, 96), and it remains unclear how UV exposure could impact the germline.

Several other mutation types have also been shown to significantly differ among human

populations, however the magnitude of these effects are typically small (< 20%). In a

recent study, analysis of Neanderthal ancestry segments recovered from 27,566 Europeans

revealed differences in Neanderthal mutation spectrum compared to modern humans, with

a higher rate of C>G mutations and a lower rate of T>C and CpG>TpG mutations in

introgressed segments compared to the non-introgressed regions of the genome (97). DNM

studies have shown that these mutations track parental age effects, highlighting a role of life

history traits underlying some of the differences in mutation spectrum of modern humans

and Neanderthals (97).

While there is emerging evidence of rapid evolution of mutation signatures across in-

dividuals and populations, there is no clear mechanistic explanation for the observed pat-

terns. These differences could be due to a number of factors, such as demography (12),

selection in particular biased gene conversion (98), life-history traits (such as mean age

of reproduction) (13, 97, 99), environmental exposures(17) or even technical artifacts due

to sequencing technologies (100). Moreover, like cancer and somatic studies, mutations in

DNA polymerases or repair enzymes could in turn induce changes in the mutation rate

or spectrum, acting as modifiers of mutation rate. Unlike cancer studies, it is difficult to

directly measure historical exposures and relate the observed variation to the molecular

mechanisms. DNM data from more diverse populations, in particular large sample sizes,

are further needed to assess the impact of various factors in contributing to the de novo

and population mutational differences.

8. Conclusion

Steadily increasing collections of genomics data provide an unprecedented opportunity for

discovering and studying patterns of mutations across tumors and populations. These

patterns proved to be informative about mutagenic processes acting on genomes and, in

some cancer-related cases, suggestive of potential interventions. The importance of un-

derstanding these processes motivated the development of new computational methods to

identify mutational signatures, static and dynamic relations between them, dependence on
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genomics context, their relation to biological possesses within cells, environmental contribu-

tion, disease progression, aging, and evolution. Recent years witnessed an explosion of new

computational approaches and experimental studies leading to steady progress in this area.

However many questions remain open promising that computational studies of mutational

patterns will continue to provide exciting results in the coming years.
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